4.6 Review

Removal of Hydrogen Sulfide From Various Industrial Gases: A Review of The Most Promising Adsorbing Materials

Journal

CATALYSTS
Volume 10, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/catal10050521

Keywords

zeolites; activated carbons; metal oxides; adsorption; H2S

Funding

  1. European Union
  2. Greek national funds through the operational program Competitiveness, Entrepreneurship and Innovation [T1EDK-00782]

Ask authors/readers for more resources

The separation of hydrogen sulfide (H2S) from gas streams has significant economic and environmental repercussions for the oil and gas industries. The present work reviews H2S separation via nonreactive and reactive adsorption from various industrial gases, focusing on the most commonly used materials i.e., natural or synthetic zeolites, activated carbons, and metal oxides. In respect to cation-exchanged zeolites, attention should also be paid to parameters such as structural and performance regenerability, low adsorption temperatures, and thermal conductivities, in order to create more efficient materials in terms of H2S adsorption. Although in the literature it is reported that activated carbons can generally achieve higher adsorption capacities than zeolites and metal oxides, they exhibit poor regeneration potential. Future work should mainly focus on finding the optimum temperature, solvent concentration, and regeneration time in order to increase regeneration efficiency. Metal oxides have also been extensively used as adsorbents for hydrogen sulfide capture. Among these materials, ZnO and Cu-Zn-O have been studied the most, as they seem to offer improved H2S adsorption capacities. However, there is a clear lack of understanding in relation to the basic sulfidation mechanisms. The elucidation of these reaction mechanisms will be a toilsome but necessary undertaking in order to design materials with high regenerative capacity and structural reversibility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available