4.6 Article

Study on Dynamic Total Factor Carbon Emission Efficiency in China's Urban Agglomerations

Journal

SUSTAINABILITY
Volume 12, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/su12072675

Keywords

carbon emission efficiency; urban agglomeration; stochastic frontier analysis; carbon emission reduction

Funding

  1. state key program of National Natural Science Foundation of China [71533004]
  2. National Key Research and Development Program of China [2016YFA0602502]
  3. National Social Science Foundation Project for Western China [16XJY004]

Ask authors/readers for more resources

The scale effect of urbanization on improving carbon emission efficiency and achieving low-carbon targets is an important topic in urban research. Using dynamic panel data from 64 prefecture-level cities in four typical urban agglomerations in China from 2006 to 2016, this paper constructed a stochastic frontier analysis model to empirically measure the city-level total-factor carbon emission efficiency index (TCEI) at different stages of urbanization and to identify rules governing its spatiotemporal evolution. We quantitatively analyzed the influences and functional characteristics of TCEI in the four urban agglomerations of Pearl River Delta, Beijing-Tianjin-Hebei, the Yangtze River Delta, and Chengdu-Chongqing. Results show that the TCEI at different stages of urbanization in these urban agglomerations is increasing year by year. The overall city-level TCEI was ranked as follows: Pearl River Delta > Beijing-Tianjin-Hebei > Yangtze River Delta > Chengdu-Chongqing. Improvements in the level of economic development and urbanization will help achieve low-carbon development in a given urban agglomeration. The optimization of industrial structure and improvement of ecological environment will help curb carbon emissions. This paper provides decision-making references for regional carbon emission reduction from optimizing industrial and energy consumption structures and improving energy efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available