4.4 Article

Trends in Antibiotic Resistance Among Ocular Microorganisms in the United States From 2009 to 2018

Journal

JAMA OPHTHALMOLOGY
Volume 138, Issue 5, Pages 439-450

Publisher

AMER MEDICAL ASSOC
DOI: 10.1001/jamaophthalmol.2020.0155

Keywords

-

Categories

Funding

  1. Bausch + Lomb (a division of Bausch Health US, LLC)

Ask authors/readers for more resources

Importance Antibiotic resistance in ocular infections can affect treatment outcomes. Surveillance data on evolving antibacterial susceptibility patterns inform the treatment of such infections. Objective To assess overall antibiotic resistance profiles and trends among bacterial isolates from ocular sources collected during 10 years. Design, Setting, and Participants This cross-sectional study of longitudinal data from the ongoing, nationwide, prospective, laboratory-based surveillance study, the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) study, included clinically relevant isolates of Staphylococcus aureus, coagulase-negative staphylococci (CoNS), Streptococcus pneumoniae, Pseudomonas aeruginosa, and Haemophilus influenzae cultured from patients with ocular infections at US centers from January 1, 2009, to December 31, 2018. Main Outcomes and Measures Minimum inhibitory concentrations were determined for various combinations of antibiotics and species. Odds ratios (ORs) were determined for concurrent antibiotic resistance; analysis of variance and chi(2) tests were used to evaluate resistance rates by patient age and geographic region; Cochran-Armitage tests identified changing antibiotic susceptibility trends over time. Results A total of 6091 isolates (2189 S aureus, 1765 CoNS, 590 S pneumoniae, 767 P aeruginosa, and 780 H influenzae) from 6091 patients were submitted by 88 sites. Overall, 765 S aureus (34.9%) and 871 CoNS (49.3%) isolates were methicillin resistant and more likely to be concurrently resistant to macrolides (azithromycin: S aureus: OR, 18.34 [95% CI, 13.64-24.67]; CoNS: OR, 4.59 [95% CI, 3.72-5.66]), fluoroquinolones (ciprofloxacin: S aureus: OR, 22.61 [95% CI, 17.96-28.47]; CoNS: OR, 9.73 [95% CI, 7.63-12.40]), and aminoglycosides (tobramycin: S aureus: OR, 18.29 [95% CI, 13.21-25.32]; CoNS: OR, 6.28 [95% CI, 4.61-8.56]) compared with methicillin-susceptible isolates (P < .001 for all). Multidrug resistance was observed among methicillin-resistant S aureus (577 [75.4%]) and CoNS (642 [73.7%]) isolates. Antibiotic resistance among S pneumoniae isolates was highest for azithromycin (214 [36.3%]), whereas P aeruginosa and H influenzae isolates showed low resistance overall. Differences in antibiotic resistance were found among isolates by patient age (S aureus: F = 28.07, P < .001; CoNS: F = 11.46, P < .001) and geographic region (S aureus: F = 8.03, P < .001; CoNS: F = 4.79, P = .003; S pneumoniae: F = 8.14, P < .001; P aeruginosa: F = 4.32, P = .005). Small changes in antibiotic resistance were noted over time (<= 2.5% per year), with decreases in resistance to oxacillin/methicillin (oxacillin: -2.16%; 95% CI, -3.91% to -0.41%; P < .001) and other antibiotics among S aureus isolates, a decrease in ciprofloxacin resistance among CoNS (-1.38%; 95% CI, -2.24% to -0.52%; P < .001), and an increase in tobramycin resistance among CoNS (0.71%; 95% CI, -0.29% to 1.71%; P = .03). Besifloxacin retained consistently low minimum inhibitory concentrations. Conclusions and Relevance Antibiotic resistance may be prevalent among staphylococcal isolates, particularly among older patients. In this study, a few small differences in antibiotic resistance were observed by geographic region or longitudinally. This cross-sectional study assesses the types of antibiotic resistance profiles and trends among bacterial isolates from ocular sources that were prevalent from 2009 to 2018. Question What are the antibiotic resistance profiles and trends among common ocular pathogens across the United States? Findings In this cross-sectional study of more than 6000 ocular isolates of Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Haemophilus influenzae collected between 2009 and 2018, methicillin resistance and multidrug resistance were prevalent among staphylococci. Antibiotic resistance profiles were mostly unchanged during 10 years. Meaning These in vitro antibiotic resistance data may assist clinicians in selecting appropriate antibiotics for treatment of ocular infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available