4.7 Article

Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants - A soil microcosm experiment

Journal

CHEMOSPHERE
Volume 147, Issue -, Pages 88-97

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.12.076

Keywords

Arbuscular mycorrhizal fungi; Maize; Phytotoxicity; ZnO nanoparticles

Funding

  1. National Natural Science Foundation of China [41471395, 41171369]
  2. Innovation Team Foundation of Henan University of Science and Technology [2015TTD002]
  3. Program for Science & Technology Innovation Talents in Universities of Henan Province [2012HASTIT014]
  4. Foundation for University Key Youth Teachers of Henan Province [2012GGJS-079]

Ask authors/readers for more resources

ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively, contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available