4.7 Article

Effects of metal ions on disinfection byproduct formation during chlorination of natural organic matter and surrogates

Journal

CHEMOSPHERE
Volume 144, Issue -, Pages 1074-1082

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.09.095

Keywords

Catalytic effect; Model compounds; Trihalomethanes (THMs); Haloacetic acids (HAAs); Complexation

Funding

  1. Major Program of the National Natural Science Foundation of China [51290284]

Ask authors/readers for more resources

The effects of calcium, cupric, ferrous and ferric ions on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) were investigated using natural organic matter (NOM), small molecular weight NOM surrogates and natural water samples. The results showed that the effects were greatly dependent on the disinfection byproduct (DBP) precursor structure and molecular weight, and metal ions species. While using NOM as precursors, addition of 4.00 mM calcium ions increased the formation of THMs, dihaloacetic acids (DHAAs) and trihaloacetic acids (THAAs) by 24-47%, 51-61% and 15-25%, respectively. Addition of cupric ions at 0.02 mM increased the formation of THMs and DHAAs by 74-83% and 90-100%, respectively, but decreased the formation of THAAs by 26-27%. Similar effect was not observed when 0.04 mM ferrous or ferric ions were added. The effects of calcium and cupric ions on DBP formation were generally more evident for the NOM surrogates than that for NOM. The primary catalytic effect of calcium ions was due to complexation and less sensitive to molecular structure or weight, while that of cupric ions was attributed to redox reactions and greatly dependent on molecular structure. Both ferric and ferrous iron had substantial effects on the DBP formation of surrogates (citric acid and catechol in particular), which implied that the catalytic effects of ferric and ferrous iron mainly depended on molecular weight. The catalytic effect of cupric ions was also observed on natural water samples, while the effects of calcium, ferrous and ferric ions on natural water samples were not evident. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available