4.7 Article

Chemical characterization of simulated landfill soil leachates from Nigeria and India and their cytotoxicity and DNA damage inductions on three human cell lines

Journal

CHEMOSPHERE
Volume 164, Issue -, Pages 469-479

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2016.08.093

Keywords

Comet assay; Cytotoxicity; DNA damage; Human cell lines; Landfill soil leachates; MTT assay

Funding

  1. Academy of Science for the Developing World (TWAS) [3240275568]

Ask authors/readers for more resources

Landfill soils are sources of emerging carcinogens, teratogens and mutagens in the environment. There is inadequate information on its possible health risk and cytogenotoxicity. This study evaluated chemical characterization of four simulated landfill leachates with their cytotoxicity and DNA damage in human cells. Hepatocarcinoma (HepG2), lymphoma (jurkat) and osteosarcoma (HOS) cells, incubated with 6.25, 12.5, 25, 50, 75 and 100% of Aba Eku (AEL), Olusosun (OSL), Awotan (AWL) and Nagpur (NPL) simulated leachates for 24 h, were assessed for cell viability using MIT assay and morphological alterations. DNA damage was also assessed after 24 h treatment of cells with sub-lethal concentrations of the leachates using comet assay. Metals and organic compounds in the soil leachates were determined using inductively coupled plasma-mass spectrometry (ICP-MS) and gas chromatography-mass spectroscopy (GC-MS) respectively. The leachates induced significant cytotoxicity in the treated cells with evidence of apoptosis; shrunken morphologies, detachment from the substratum and cytoplasmic vacuolations. Similarly, there was significant DNA damage induced in the treated cells, with increased Olive tail moment, tail length and % tail DNA. Jurkat was the most sensitive (Jurkat > HepG2 > HOS) to the cytotoxic and genotoxic effects of the leachates. All the analyzed metals except Cd, Fe, Zn and Mn were found at levels lower than standard allowable limits. 32, 17, 23 and 23 different PAHs and PCBs were detected in AEL, AWL, OSL and NPL respectively, at varying retention peak times. These toxic constituents induced the observed cytogenotoxicity in the cells and may suggest possible public health risk. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available