4.7 Review

State of remediation and metal toxicity in the Tri-State Mining District, USA

Journal

CHEMOSPHERE
Volume 144, Issue -, Pages 1132-1141

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.09.080

Keywords

Cadmium; Lead; Remediation; Tr-state mining district; Zinc

Ask authors/readers for more resources

Mining operations in the Tri-State Mining District of Kansas, Missouri and Oklahoma (TSMD), once one of the major lead and zinc mining areas in the world, had completely ceased by 1970. As mining companies moved out, the land was left with underground tunnels and mine shafts and the surface with abandoned tailings piles, which progressively contaminated groundwater and soil. Despite remedial actions undertaken in the 1980's, areas within the TSMD still contain Cd, Pb, and Zn concentrations exceeding safe levels. Because of the large area and highly dispersed occurrence of wastes, environmental studies generally have been confined either to a stream basin or to a single state. Studies also have differed in their approach and analytical methodologies. An overview of the totality of the TSMD and its present state of contamination is presented here. Data show that metal content in sediments have the following common features: (1) a wide range of Pb and Zn concentrations, up to three orders of magnitude, (2) median values for Cd, Pb and Zn content in sediments and soils were similar among studies, (3) median values for most studies were at or above the guidelines recommended for aquatic habitats, and (4) highest content of Pb and Zn were closely associated with the geographical location of former mining and smelting centers. The above observations imply that mine wastes remain a problem and further remediation is needed. Cost-effective remedial alternatives for this area's geology, climate, and land use, are discussed. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available