4.5 Article

Characteristics and Sources of Black Carbon Aerosol in a Mega-City in the Western Yangtze River Delta, China

Journal

ATMOSPHERE
Volume 11, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/atmos11040315

Keywords

black carbon; mixing state; sources; firework emissions; winter; Yangtze River Delta

Funding

  1. Lianyungang Environmental Monitoring Center of Jiangsu Province project Research and demonstration Application of PM

Ask authors/readers for more resources

A single particle soot photometer (SP2) was deployed in urban Nanjing, located in the Yangtze River Delta (China), to investigate the mixing state and sources of ambient refractory black carbon (rBC) from 26 January to 25 February 2014, along with an in-situ measurement of submicron aerosol chemical species by an aerodyne aerosol chemical speciation monitor (ACSM). The results showed that anthropogenic activities associated with firework emissions can be a significant source for rBC-containing particles during the period of the Chinese New Year, resulting from the evident peaks of rBC at midnight. During the residual periods, namely regular day (RD), the diurnal cycles of rBC presented two typical peaks that can be attributed to a synergistic influence of local traffic emissions and boundary layer changes throughout a day. Three coating factors, including organics, sulfate, and nitrate (-rich), were resolved using a positive matrix factorization (PMF) approach to explain the potential contribution of non-rBC coatings (i.e., organics, sulfate, and nitrate) to the coating thickness of rBC-containing particles. As the results show, organic aerosols (OAs) might be a major contributor to the coating thickness of rBC-coating particles during the whole period. The relative coating thickness (a ratio between coated particle size to BC core) exhibited a positive relationship with sulfate, indicative of the favorable coating factor during the episode caused by firework emissions. Source apportionment of rBC was performed via a multiple linear regression between the total rBC mass and each ACSM-PMF factor (rBC-ACSM-PMF). On average, biomass burning emissions accounted for 43%, being the largest contributor during the RD period, whereas local traffic emissions played a major role during the new year time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available