4.7 Article

Effects of effluent organic matter (EfOM) on the removal of emerging contaminants by ozonation

Journal

CHEMOSPHERE
Volume 151, Issue -, Pages 332-338

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2016.02.094

Keywords

Emerging contaminants; Effluent organic matter; Ozonation; Hydroxyl radical

Funding

  1. Ministry of Science and Technology, Taiwan [102-2221-E-002-243-MY3]

Ask authors/readers for more resources

Removal of emerging contaminants in wastewater treatment is essential to ensure the ecological health of the receiving water bodies. Ozonation is a promising technology to achieve this purpose but important wastewater characteristics affecting the optimal removal efficiency need to be elucidated. Secondary effluents contain effluent organic matter (EfOM), which can react directly with ozone as well as react as the initiator, promoter and inhibitor in the hydroxyl radical (.OH) chain reactions resulting from ozone decomposition. These different reaction modes of EfOM, coupled with alkalinity and pH value, collectively determine the ozone and .OH exposures and the degradation of pharmaceutical compounds by ozonation. In this study, we determined the rate constants of EfOM collected from two municipal wastewater treatment plants in terms of direct ozone reaction, initiation, promotion and inhibition at various pH values (pH 6.0-7.5) and temperatures (10-30 degrees C). The rate constants of direct reaction and initiation generally increased with the increasing pH value while the rate constants of promotion and inhibition did not vary significantly. All rate constants increased with the increasing temperature. The removal of ibuprofen, acetylsulfamethoxazole and metoprolol in diluted secondary effluent by ozonation can be fairly-well modeled by using the determined rate constants of EfOM. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available