4.7 Article

Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water

Journal

CHEMOSPHERE
Volume 146, Issue -, Pages 253-262

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.12.017

Keywords

Rice husk; Nanoparticles; Adsorption; Regeneration; Crystal violet

Ask authors/readers for more resources

In this work, preparation of adsorbent nanoparticles based on treated low-value agricultural by-product rice husk (TARH), and poly(methylmethacrylate-co-maleic anhydride), poly(MMA-co-MA), is reported for the removal of Pb(II) ion and Crystal violet dye from water. The prepared adsorbent was characterized by FT-IR, SEM, AFM, DLS, BET and Zeta potential. The metal ion adsorption capability was determined for rice husk (RH), TARH, crosslinked poly(MMA-co-MA) (CNR), and CNR@TARH nanoparticles. Different factors affecting the adsorption of Pb(II) such as pH, contact time, initial metal ion concentration and also temperature were studied to investigate adsorption isotherms, kinetics and thermodynamics. For the four tested adsorption isotherm models, the equilibrium sorption data for CNR@TARH nanoparticles obeyed the Langmuir isotherm equation with maximum sorption capacity of 93.45 mg g(-1). The kinetic adsorption data fitted best the Lagergren pseudo-second order model. Regeneration of adsorbent was easily performed by adsorption/desorption experiments followed for 4 cycles. Finally, the ability of the nanoparticles to remove Crystal violet dye from aqueous solution was also investigated by varying the initial dye concentration, pH and immersion time and the adsorption mechanism followed the second order kinetic model. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available