4.6 Article

Solid-State NMR Studies of Solvent-Mediated, Acid-Catalyzed Woody Biomass Pretreatment for Enzymatic Conversion of Residual Cellulose

Journal

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Volume 8, Issue 16, Pages 6551-6563

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.0c01538

Keywords

Biomass; Pretreatment; Solid-state NMR; Cellulose; Enzymatic conversion

Funding

  1. Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-SC0018409, DE-FC02-07ER64494]
  2. UW-Madison Bender Fund (2012)
  3. UW2020 (2017)

Ask authors/readers for more resources

Enzymes selectively hydrolyze the carbohydrate fractions of lignocellulosic biomass into corresponding sugars, but these processes are limited by low yields and slow catalytic turnovers. Under certain conditions, the rates and yields of enzymatic sugar production can be increased by pretreating biomass using solvents, heat, and dilute acid catalysts. However, the mechanistic details underlying this behavior are not fully elucidated, and designing effective pretreatment strategies remains an empirical challenge. Herein, using a combination of solid-state and high-resolution magic-angle-spinning NMR, infrared spectroscopy, and X-ray diffractometry, we show that the extent to which cellulase enzymes are able to hydrolyze solvent-pretreated biomass can be understood in terms of the ability of the solvent to break the chemical linkages between cellulose and noncellulosic materials in the cell wall. This finding is of general significance to enzymatic biomass conversion research, and implications for designing improved biomass conversion strategies are discussed. These findings demonstrate the utility of solid-state NMR as a tool to elucidate the key chemical and physical changes that occur during the liquid-phase conversion of real biomass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available