4.7 Article

Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode

Journal

CHEMOSPHERE
Volume 149, Issue -, Pages 49-56

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2016.01.078

Keywords

The induced convection; Electrocatalytic reactor system; Ti/SnO2-Sb tubular porous electrode; Pyridine; Transition state calculation

Funding

  1. National Science Technology Support Plan of China [2014BAC08B03]
  2. Natural Science Foundation of China [51578287]

Ask authors/readers for more resources

Diffusion in electrochemistry is a critical issue for water purification. Electrocatalytic reactor system in improving water quality is a useful way to induce convection to enhance diffusion. This study focuses on the preparation and the characterization of Ti/SnO2-Sb tubular porous electrode for degrading pyridine wastewater. The electrode as an anode in reactor system is prepared by coating SnO2-Sb as an electrocatalyst via Pechini method on the tubular porous Ti. Scanning Electron Microscopy, Energy Dispersive Spectrum, X-ray Diffraction and Pore Distribution are employed to evaluate the structure and morphology of the electrodes coatings, and Linear Sweep Voltammetry and Cyclic Voltammetry are used to illustrate the electrochemical properties of the electrodes coatings. Furthermore, the electrochemical oxidation performance of Ti/SnO2-Sb tubular porous electrode is characterized by degrading pyridine wastewater. The effects of flow and static pattern, initial pyridine concentration, supporting electrolyte concentration, current density and pH on the performance of the reactor were investigated in the electrocatalytic reactor system. The results indicated that the removal ratio of pyridine reaches maximum which is 98% under the optimal operation conditions, that are 100 mg L-1 initial pyridine concentration, 10 g L-1 supporting electrolyte concentration, 30 mA cm(-2) current density and pH 3. Transition state calculation based on the density function theory was combined with High Performance Liquid Chromatography, Gas Chromatography and Ionic Chromatography results to describe the pathway of pyridine degradation. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available