4.6 Review

Toward a Sustainable Decentralized Water Supply: Review of Adsorption Desorption Desalination (ADD) and Current Technologies: Saudi Arabia (SA) as a Case Study

Journal

WATER
Volume 12, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/w12041111

Keywords

decentralized; desalination technologies; adsorption desorption desalination (ADD); specific energy consumption

Ask authors/readers for more resources

Several regions are confronting a severe scarcity of fresh water due to the gap between supply and demand. They strive to bridge that gap by depleting nonrenewable water aquifers and expanding centralized energy-intensive desalination technologies. Continuing to adopt the same unsustainable approach could deplete the water aquifers and increase the consumption of fossil fuel and the ecological impact on air, water, and land. However, the traditional paradigm of centralized desalination systems could be shifted by increasing the utilization of renewable distributed generation, which can be coupled with emerging desalination technology such as adsorption desorption desalination (ADD), which has autonomous and resilient attributes that can contribute to the sustainability of decentralized fresh water supply in the future. In this work, three commercialized desalination technologies were reviewed and compared with emerging ones to explore the most economically and environmentally efficient systems within the context of decentralized water production. The well-known configurations of ADD were evaluated and compared with sea water reverse osmosis (SWRO), which is recognized as the principal commercialized desalination technology worldwide. The quantitative case study methodology was used by investigating four centralized seawater desalination plants in Saudi Arabia (SA) with their associated pipeline systems from the energy consumption point of view to determine the applicability of implementing ADD technology in SA and similar arid areas. The study reveals that adopting decentralized ADD technology coupled with renewable energy sources could reduce the specific energy consumption from 4 kWh/m(3) to less than 1.38 kWh/m(3). Combining reduced energy consumption from desalination plants and elimination of supply pipelines could potentially result in a significant reduction in energy consumption and carbon emissions. Finally, the study may be useful for researchers working on enhancing ADD processes, as well as technology users who would like to implement the most efficient ADD configurations. Additionally, it may initiate a direction of utilizing the results of original critical reviews as a methodology to develop the applied technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available