4.6 Article

The mesenchymal stromal cell secretome impairs methicillin-resistant Staphylococcus aureus biofilms via cysteine protease activity in the equine model

Journal

STEM CELLS TRANSLATIONAL MEDICINE
Volume 9, Issue 7, Pages 746-757

Publisher

OXFORD UNIV PRESS
DOI: 10.1002/sctm.19-0333

Keywords

antimicrobial; biofilm; cutaneous wounds; mesenchymal stromal cells; MRSA; secretome

Funding

  1. USDA National Institute of Food and Agriculture [2017-05722]
  2. Agriculture & Food Research Initiative Competitive

Ask authors/readers for more resources

Mesenchymal stromal cells (MSCs) from various species, such as humans, mice, and horses, were recently found to effectively inhibit the growth of various bacteria associated with chronic infections, such as nonhealing cutaneous wounds, via secretion of antimicrobial peptides. These MSC antimicrobial properties have primarily been studied in the context of the planktonic phenotype, and thus, information on the effects on bacteria in biofilms is largely lacking. The objectives of this study were to evaluate the in vitro efficacy of the MSC secretome against various biofilm-forming wound pathogens, including the methicillin-resistant Staphylococcus aureus (MRSA), and to explore the mechanisms that affect bacterial biofilms. To this end, we used equine MSC, because the horse represents a physiologically relevant model for human wound healing and offers a readily translatable model for MSC therapies in humans. Our salient findings were that the equine MSC secretome inhibits biofilm formation and mature biofilms of various bacteria, such as Pseudomonas aeruginosa, S. aureus, and Staphylococcus epidermidis. Furthermore, we demonstrated that equine MSC secrete cysteine proteases that destabilize MRSA biofilms, thereby increasing the efficacy of antibiotics that were previously tolerated by the biofilms. In light of the rise of antibiotic-resistant bacterial strains as an increasing global health threat, our results provide the rationale for using the MSC secretome as a complementary treatment for bacterial skin infections in both humans and horses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available