4.7 Article

Effects of incorporating differently-treated rice straw on phytoavailability of methylmercury in soil

Journal

CHEMOSPHERE
Volume 145, Issue -, Pages 457-463

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.11.037

Keywords

Methylmercury; Chemical extraction; Ammonium thiosulfate; Straw return; Bioavailability

Funding

  1. National Natural Science Foundation of China [41273087]
  2. Natural Science Foundation of Jiangsu Province [BK2012312]
  3. Ministry of Education of China [20120091120014]

Ask authors/readers for more resources

Differently-treated crops straw is being widely used to fertilize soil, while the potential impacts of straw amendment on the biogeochemistry and phytoavailability of mercury in contaminated soils are largely unknown. In the present study, differently-treated rice straw (dry straw, composted straw, straw biochar, and straw ash) was incorporated into mercury-contaminated soil at an environment relevant level (1/100, w/w), and mercury speciation, methylmercury (MeHg) phytoavailability (using ammonium thiosulfate extraction method, validated elsewhere) and bioaccumulation (in Indian mustard Brassica junceas) were quantified. Our results indicated that incorporating straw biochar or composted straw into soil would decrease phytoavailable MeHg levels, possibly due to the strong binding of MeHg with particulate organic matter in amended straw ('MeHg immobilization effect'). Consequently, MeHg accumulation in aboveground tissue of Indian mustard harvested from straw biochar-amended soil decreased by 20% compared to the control. Differently, incorporation of dry straw resulted in elevated MeHg levels in soil ('Mercury methylation effect'). Decomposition of amended dry straw in soil would evidently increase DOC levels (averagely 40%-195% higher than the control), which may subsequently mobilize MeHg in the soil ('MeHg mobilization effect'). Accordingly, incorporation of dry straw led to increased phytoavailable MeHg levels in the soil and doubled MeHg accumulation in Indian mustard. Our results provided the first evidence that incorporating differently-treated rice straw into soil could have diverse effects on mercury biogeochemistry and phytoavailability, which should be taken into account in risk assessment or soil remediation. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available