4.7 Article

Interacting Polaron-Polaritons

Journal

PHYSICAL REVIEW X
Volume 10, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.10.021011

Keywords

Condensed Matter Physics; Quantum Physics; Semiconductor Physics

Funding

  1. European Research Council (ERC) Advanced investigator grant (POLTDES)
  2. Swiss National Science Foundation (SNSF)

Ask authors/readers for more resources

Two-dimensional semiconductors provide an ideal platform for exploration of linear exciton and polariton physics, primarily due to large exciton binding energy and strong light-matter coupling. These features, however, generically imply reduced exciton-exciton interactions, hindering the realization of active optical devices such as lasers or parametric oscillators. Here, we show that electrical injection of itinerant electrons into monolayer molybdenum diselenide allows us to overcome this limitation: dynamical screening of exciton-polaritons by electrons leads to the formation of new quasiparticles termed polaron-polaritons that exhibit unexpectedly strong interactions as well as optical amplification by Bose-enhanced polaron-electron scattering. To measure the nonlinear optical response, we carry out timeresolved pump-probe measurements and observe polaron-polariton interaction enhancement by a factor of 50 (0.5 mu eV mu m(2)) as compared to exciton-polaritons. Concurrently, we measure a spectrally integrated transmission gain of the probe field of greater than or similar to 2 stemming from stimulated scattering of polaron-polaritons. We show theoretically that the nonequilibrium nature of optically excited quasiparticles favors a previously unexplored interaction mechanism stemming from a phase-space filling in the screening cloud, which provides an accurate explanation of the strong repulsive interactions observed experimentally. Our findings show that itinerant electron-exciton interactions provide an invaluable tool for electronic manipulation of optical properties, demonstrate a new mechanism for dramatically enhancing polariton-polariton interactions, and pave the way for realization of nonequilibrium polariton condensates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available