4.7 Article

Influence of ligands on metal speciation, transport and toxicity in a tropical river during wet (monsoon) period

Journal

CHEMOSPHERE
Volume 163, Issue -, Pages 322-333

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2016.07.105

Keywords

Speciation Heavy metals; Cluster analyses; MINTEQA2; Brahmaputra river; Health risk index; India

Funding

  1. UGC [41-1117/2012 (SR)]
  2. Kurita Water and Environment Foundation (KWEF, Japan) [14P009]

Ask authors/readers for more resources

Metal speciation and transport are seldom assessed in densely populated Tropical River. An evaluation of the phase distribution for Copper (Cu), Lead (Pb) and Zinc (Zn) along with chemical speciation, variance with different water quality parameters and toxicity were conducted in the Brahmaputra River of India from upstream to downstream during wet (monsoon) periods in July 2014. Results indicated that metal free ions and carbonates were dominant in the inorganic fractions whereas metal concentrations were negligible in the anionic inorganic fractions. Due to high sediment load in the river during monsoon, metals were substantially higher in the particulate fractions than in the aqueous phase. Partition coefficient for Cu (3.1-6.1), Pb (3.4-6.5) and Zn (3.5-6.9), demonstrated strong adsorption of the metals on suspended matter. Q-mode hierarchical cluster analysis (HCA) illustrated groupings mainly governed by quality parameters rather than by the river course. R-mode results imply selectivity of the affinities of metals for different ligands. Health risk index (HRI) values were less than 1 for dissolved metal for Cu, Pb and Zn while it was greater than 1 for total metal for Pb and Cu indicating potential human health risk. The study demonstrated that binding of metals with naturally occurring dissolved organic matter or suspended particulate matter affects metal bioavailability in river during wet periods when sediment load is particularly high. A combination of empirical, computational and statistical relationships between ionic species and fractions of metals provided greater certitude in identifying the resemblance among the different locations of the river. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available