4.7 Article

Hyperspectral Pansharpening With Deep Priors

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2019.2920857

Keywords

Bayes methods; Hyperspectral sensors; High frequency; Spatial resolution; Fuses; Imaging; Deep priors; high frequency; hyperspectral (HS) pansharpening; structure tensor (ST); sylvester equation

Funding

  1. National Natural Science Foundation of China [61801359, 61571345, 91538101, 61501346, 61502367, 61701360]
  2. Young Talent fund of University Association for Science and Technology in Shaanxi of China [20190103]
  3. China Postdoctoral Science Foundation [2017M620440, 2019T120878]
  4. 111 project [B08038]
  5. Fundamental Research Funds for the Central Universities [JB180104]
  6. Natural Science Basic Research Plan in Shaanxi Province of China [2019JQ153, 2016JQ6023, 2016JQ6018]
  7. Yangtse Rive Scholar Bonus Schemes [CJT160102]
  8. Ten Thousand Talent Program

Ask authors/readers for more resources

Hyperspectral (HS) image can describe subtle differences in the spectral signatures of materials, but it has low spatial resolution limited by the existing technical and budget constraints. In this paper, we propose a promising HS pansharpening method with deep priors (HPDP) to fuse a low-resolution (LR) HS image with a high-resolution (HR) panchromatic (PAN) image. Different from the existing methods, we redefine the spectral response function (SRF) based on the larger eigenvalue of structure tensor (ST) matrix for the first time that is more in line with the characteristics of HS imaging. Then, we introduce HFNet to capture deep residual mapping of high frequency across the upsampled HS image and the PAN image in a band-by-band manner. Specifically, the learned residual mapping of high frequency is injected into the structural transformed HS images, which are the extracted deep priors served as additional constraint in a Sylvester equation to estimate the final HR HS image. Comparative analyses validate that the proposed HPDP method presents the superior pansharpening performance by ensuring higher quality both in spatial and spectral domains for all types of data sets. In addition, the HFNet is trained in the high-frequency domain based on multispectral (MS) images, which overcomes the sensitivity of deep neural network (DNN) to data sets acquired by different sensors and the difficulty of insufficient training samples for HS pansharpening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available