4.8 Article

Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates

Journal

CELL REPORTS
Volume 31, Issue 5, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.celrep.2020.107599

Keywords

-

Categories

Funding

  1. Lieber Institute for Brain Development (LIBD)
  2. AstraZeneca
  3. NIH [DA02399, EY002593, MH106934, MH106874, MH116488, MH110926, MH109904, CA177669, CA212007, CA006973]
  4. Johns Hopkins University Discovery Award
  5. Johns Hopkins School of Medicine Synergy Award
  6. National Institute of Mental Health (NIMH) [R01-MH113257]

Ask authors/readers for more resources

Better understanding of the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here, we use RNA sequencing, cell imaging, and lineage tracing of mouse and human in vitro NSCs and monkey brain sections to model the generation of cortical neuronal fates. We show that conserved signaling mechanisms regulate the acute transition from proliferative NSCs to committed glutamatergic excitatory neurons. As human telencephalic NSCs develop from pluripotency in vitro, they transition through organizer states that spatially pattern the cortex before generating glutamatergic precursor fates. NSCs derived from multiple human pluripotent lines vary in these early patterning states, leading differentially to dorsal or ventral telencephalic fates. This work furthers systematic analyses of the earliest patterning events that generate the major neuronal trajectories of the human telencephalon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available