4.7 Article

Absorbable Thioether Grafted Hyaluronic Acid Nanofibrous Hydrogel for Synergistic Modulation of Inflammation Microenvironment to Accelerate Chronic Diabetic Wound Healing

Journal

ADVANCED HEALTHCARE MATERIALS
Volume 9, Issue 11, Pages -

Publisher

WILEY
DOI: 10.1002/adhm.202000198

Keywords

absorbable dressings; diabetes; inflammation microenvironments; nanofibrous hydrogels; wound healing

Funding

  1. National Natural Science Foundation of China [51673188, 51773198, 21975246]

Ask authors/readers for more resources

Current standard of care dressings are unsatisfactorily inefficacious for the treatment of chronic wounds. Chronic inflammation is the primary cause of the long-term incurable nature of chronic wounds. Herein, an absorbable nanofibrous hydrogel is developed for synergistic modulation of the inflammation microenvironment to accelerate chronic diabetic wound healing. The electrospun thioether grafted hyaluronic acid nanofibers (FHHA-S/Fe) are able to form a nanofibrous hydrogel in situ on the wound bed. This hydrogel degrades and is absorbed gradually within 3 days. The grafted thioethers on HHA can scavenge the reactive oxygen species quickly in the early inflammation phase to relieve the inflammation reactions. Additionally, the HHA itself is able to promote the transformation of the gathered M1 macrophages to the M2 phenotype, thus synergistically accelerating the wound healing phase transition from inflammation to proliferation and remodeling. On the chronic diabetic wound model, the average remaining wound area after FHHA-S/Fe treatment is much smaller than both that of FHHA/Fe without grafted thioethers and the control group, especially in the early wound healing stage. Therefore, this facile dressing strategy with intrinsic dual modulation mechanisms of the wound inflammation microenvironment may act as an effective and safe treatment strategy for chronic wound management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available