4.6 Article

Prediction of the Long-Term Performance and Durability of GFRP Bars under the Combined Effect of a Sustained Load and Severe Environments

Journal

MATERIALS
Volume 13, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/ma13102341

Keywords

GFRP bars; durability; stress level; degradation; long-term performance prediction

Funding

  1. National Natural Science Foundation of China [51978550]

Ask authors/readers for more resources

With the continuous development of production technology, the performance of glass-fiber-reinforced polymer (GFRP) bars is also changing, and some design codes are no longer applicable to new materials based on previous research results. In this study, a series of durability tests were carried out on a new generation of GFRP bars in laboratory-simulated seawater and a concrete environment under different temperatures and sustained loads. The durability performance of GFRP bars was investigated by analysing the residual tensile properties. The degradation mechanism of GFRP bars was also analysed by scanning electronic microscopy (SEM). Furthermore, the long-term performance of GFRP bars exposed to concrete pore solution under different stress levels was predicted using Arrhenius theory. The research results show that the degradation rate of GFRP bars was increased significantly at a 40% stress level. By comparing the test results, design limits, and other scholars' research results, it is demonstrated that the GFRP bars used in this test have a good durability performance. It is found that the main degradation mechanism of the GFRP bars is the debonding at the fiber-matrix interface. In the range test, the effects of a 20% stress level on the degradation of GFRP bars were not obvious. However, the long-term performance prediction results show that when the exposure time was long enough, the degradation processes were accelerated by a 20% stress level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available