4.6 Article

Material Discovery and High Throughput Exploration of Ru Based Catalysts for Low Temperature Ammonia Decomposition

Journal

MATERIALS
Volume 13, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/ma13081869

Keywords

ammonia decomposition; high throughput; hydrogen production; ruthenium catalyst; promoter; low temperature

Funding

  1. South Carolina Center of Economic Excellence for Strategic Approaches to the Generation of Electricity
  2. US National Science Foundation [DGE 1250052]
  3. Department of Energy, ARPA-E [DE-AR0000931]

Ask authors/readers for more resources

High throughput experimentation has the capability to generate massive, multidimensional datasets, allowing for the discovery of novel catalytic materials. Here, we show the synthesis and catalytic screening of over 100 unique Ru-Metal-K based bimetallic catalysts for low temperature ammonia decomposition, with a Ru loading between 1-3 wt% Ru and a fixed K loading of 12 wt% K, supported on gamma-Al2O3. Bimetallic catalysts containing Sc, Sr, Hf, Y, Mg, Zr, Ta, or Ca in addition to Ru were found to have excellent ammonia decomposition activity when compared to state-of-the-art catalysts in literature. Furthermore, the Ru content could be reduced to 1 wt% Ru, a factor of four decrease, with the addition of Sr, Y, Zr, or Hf, where these secondary metals have not been previously explored for ammonia decomposition. The bimetallic interactions between Ru and the secondary metal, specifically RuSrK and RuFeK, were investigated in detail to elucidate the reaction kinetics and surface properties of both high and low performing catalysts. The RuSrK catalyst had a turnover frequency of 1.78 s(-1), while RuFeK had a turnover frequency of only 0.28 s(-1) under identical operating conditions. Based on their apparent activation energies and number of surface sites, the RuSrK had a factor of two lower activation energy than the RuFeK, while also possessing an equivalent number of surface sites, which suggests that the Sr promotes ammonia decomposition in the presence of Ru by modifying the active sites of Ru.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available