4.6 Article

Hot Corrosion and Mechanical Performance of Repaired Inconel 718 Components via Laser Additive Manufacturing

Journal

MATERIALS
Volume 13, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/ma13092128

Keywords

Inconel 718; hot corrosion; microstructural change; mechanical properties; laser additive manufacturing

Funding

  1. National Key R&D Program of China [2017YFB1103600]
  2. Fundamental Research Funds for the Provincial Universities of Zhejiang [RF-C2019003]

Ask authors/readers for more resources

Hot corrosion is one of the crucial failure modes of Ni-based superalloy components operating at high temperatures, which inevitably affects the subsequent mechanical properties of the alloys. In this research, damaged Inconel 718 alloy components with a pre-made trapezoid groove are repaired using laser additive manufacturing technique, and the change mechanisms of the microstructure and tensile properties of the repaired Inconel 718 alloy due to the hot corrosion in the salt mixture of 87.5 wt.% Na2SO4 + 5 wt.% NaCl + 7.5 wt.% NaNO3 at 650 degrees C for different durations are investigated. The results show that oxidation and Cr-depletion occur on the repaired components due to the hot corrosion, and the corrosion products are mainly composed of Cr2O3, Fe3O4, and Ni3S2. The tensile strength and elongation of the as-repaired specimens are 736.6 MPa and 12.5%, respectively. After being hot corroded for 50 h, the tensile strength increases to 1022.9 MPa and elongation decreases to 1.7%. However, after being hot corroded for 150 h, both tensile strength and elongation of the repaired specimens drop to 955.8 MPa and 1.2%, respectively. The mechanical performance alteration is highly related to thermal effects instead of the molten salt attack.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available