4.5 Article

Asymmetric Large Deformation Superharmonic and Subharmonic Resonances of Spiral Stiffened Imperfect FG Cylindrical Shells Resting on Generalized Nonlinear Viscoelastic Foundations

Journal

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S1758825120500520

Keywords

Asymmetric nonlinear vibrations; superharmonic and subharmonic behaviors; stiffened functionally graded cylindrical shell; perturbation method; generalized nonlinear viscoelastic foundation; geometric imperfections

Categories

Ask authors/readers for more resources

This paper is devoted to superharmonic and subharmonic behavior investigation of imperfect functionally graded (FG) cylindrical shells with external FG spiral stiffeners under large amplitude excitations. The structure is embedded within a generalized non-linear viscoelastic foundation, which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness, to account for the vibration hardening/softening phenomena and damping considerations. The von Kaman strain-displacement kinematic non linearity is employed in the constitutive laws of the shell and stiffeners. The external spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. The coupled governing equations are solved by using Galerkin's method in conjunction with the stress function concept. The multiple scales method is utilized to detect the subharmonic and superharmonic resonances and the frequency-amplitude relations of the 1/3 and 1/2 subharmonic and 3/1 and 2/1 superharmonic resonances of the system. Finally, the influences of the stiffeners helical angles, foundation type, coefficient of the nonlinear elastic foundation, material distribution, and excitation amplitude on the system resonances are investigated comprehensively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available