4.7 Article

Tumor Microenvironment Is Critical for the Maintenance of Cellular States Found in Primary Glioblastomas

Journal

CANCER DISCOVERY
Volume 10, Issue 7, Pages 964-979

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/2159-8290.CD-20-0057

Keywords

-

Categories

Funding

  1. WCM Applied Bioinformatics Core
  2. WCM Flow Cytometry Core
  3. WCM Epigenomics Core
  4. WCM Microscopy and Image Analysis Core Facility
  5. NIH [1DP1CA228040-01]
  6. Tri-Institutional Training Program in Computational Biology and Medicine - NIH [1T32GM083937]

Ask authors/readers for more resources

Glioblastoma (GBM), an incurable tumor, remains difficult to model and more importantly to treat due to its genetic/epigenetic heterogeneity and plasticity across cellular states. The ability of current tumor models to recapitulate the cellular states found in primary tumors remains unexplored. To address this issue, we compared single-cell RNA sequencing of tumor cells from 5 patients across four patient-specific glioblastoma stem cell (GSC)-derived model types, including glioma spheres, tumor organoids, glioblastoma cerebral organoids (GLICO), and patient-derived xenografts. We find that GSCs within the GLICO model are enriched for a neural progenitor-like cell subpopulation and recapitulate the cellular states and their plasticity found in the corresponding primary parental tumors. These data demonstrate how the contribution of a neuroanatomically accurate human microenvironment is critical and sufficient for recapitulating the cellular states found in human primary GBMs, a principle that may likely apply to other tumor models. SIGNIFICANCE: It has been unclear how well different patient-derived GBM models are able to recreate the full heterogeneity of primary tumors. Here, we provide a complete transcriptomic characterization of the major model types. We show that the microenvironment is crucial for recapitulating GSC cellular states, highlighting the importance of tumor-host cell interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available