4.6 Article

Semi-supervised deep learning based 3D analysis of the peripapillary region

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 11, Issue 7, Pages 3843-3856

Publisher

OPTICAL SOC AMER
DOI: 10.1364/BOE.392648

Keywords

-

Funding

  1. Fondation Brain Canada
  2. Natural Sciences and Engineering Research Council of Canada
  3. Canadian Institutes of Health Research
  4. Alzheimer Society
  5. Michael Smith Foundation for Health Research
  6. Genome British Columbia

Ask authors/readers for more resources

Optical coherence tomography (OCT) has become an essential tool in the evaluation of glaucoma, typically through analyzing retinal nerve fiber layer changes in circumpapillary scans. Three-dimensional OCT volumes enable a much more thorough analysis of the optic nerve head (ONH) region, which may be the site of initial glaucomatous optic nerve damage. Automated analysis of this region is of great interest, though large anatomical variations and the termination of layers make the requisite peripapillary layer and Bruch's membrane opening (BMO) segmentation a challenging task. Several machine learning-based segmentation methods have been proposed for retinal layer segmentation, and a few tbr the ONH region, but they typically depend on either heavily averaged or pre-processed B-scans or a large amount of annotated data, which is a tedious task and resource-intensive. We evaluated a semi-supervised adversarial deep learning method for segmenting peripapillary retinal layers in OCT B-scans to take advantage of unlabeled data. We show that the use of a generative adversarial network and unlabeled data can improve the performance of segmentation. Additionally, we use a Faster R-CNN architecture to automatically segment the BMO. The proposed methods are then used for the 3D morphometric analysis of both control and glaucomatous ONH volumes to demonstrate the potential for clinical utility. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available