4.8 Article

The Impact of Atmosphere on Energetics of Lead Halide Perovskites

Journal

ADVANCED ENERGY MATERIALS
Volume 10, Issue 24, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202000908

Keywords

energetics; halide perovskites; lead halide perovskites; photovoltaic devices; solar cells; thin films

Funding

  1. Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University
  2. OIST R&D Cluster Research Program
  3. OIST Proof of Concept (POC) Program
  4. JSPS KAKENHI [JP18K05266]

Ask authors/readers for more resources

Solar cells based on metal halide perovskites have emerged as a promising low-cost photovoltaic technology. In contrast to inert atmospheres where most of the lab-scale devices are made to date, large-area low-cost production of perovskite solar cells often involves processing of perovskites in various atmospheres including ambient air, nitrogen, and/or vacuum. Herein, the impact of atmosphere on the energy levels of methylammonium lead halide perovskite films is systematically investigated. The atmosphere is varied to simulate the typical fabrication process. Through a comprehensive analysis combining the Fermi level evolution, surface photovoltage, photoluminescence properties, photovoltaic performance, and device simulation, an overall landscape of the energy diagram of the perovskite layer is able to be determined. The findings have direct implications for real-world devices under typical atmospheres, and provide insights into the fabrication-process design and optimization. Furthermore, a universal Fermi level shift under vacuum for lead halide-based perovskites revealed in this study, urges a refreshed view on the energetics studies conducted without considering the atmospheric effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available