4.8 Article

Sub-nanosecond memristor based on ferroelectric tunnel junction

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-15249-1

Keywords

-

Funding

  1. National Natural Science Foundation of China [51790491, 51622209, 21521001, 51972296]
  2. National Key Research and Development Program of China [2016YFA0300103, 2019YFA0307900]

Ask authors/readers for more resources

Next-generation non-volatile memories with ultrafast speed, low power consumption, and high density are highly desired in the era of big data. Here, we report a high performance memristor based on a Ag/BaTiO3/Nb:SrTiO3 ferroelectric tunnel junction (FTJ) with the fastest operation speed (600ps) and the highest number of states (32 states or 5 bits) per cell among the reported FTJs. The sub-nanosecond resistive switching maintains up to 358K, and the write current density is as low as 4x10(3)Acm(-2). The functionality of spike-timing-dependent plasticity served as a solid synaptic device is also obtained with ultrafast operation. Furthermore, it is demonstrated that a Nb:SrTiO3 electrode with a higher carrier concentration and a metal electrode with lower work function tend to improve the operation speed. These results may throw light on the way for overcoming the storage performance gap between different levels of the memory hierarchy and developing ultrafast neuromorphic computing systems. Memristor devices based on ferroelectric tunnel junctions are promising, but suffer from quite slow switching times. Here, the authors report on ultrafast switching times at and above room temperature of 600ps in Ag/BaTiO3/Nb:SrTiO3 based ferroelectric tunnel junctions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available