4.8 Article

Sediment controls dynamic behavior of a Cordilleran Ice Stream at the Last Glacial Maximum

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-15579-0

Keywords

-

Funding

  1. National Science Foundation [OCE1434945]
  2. U.S. Science Support Program of IODP
  3. German Research Foundation [MU3670/1-2]
  4. Helmholtz Research grant [VH-NG-1101]
  5. University of Central Missouri Center for Teaching and Learning
  6. Australian IODP office
  7. Australian Research Council
  8. American Australian Association

Ask authors/readers for more resources

The uncertain response of marine terminating outlet glaciers to climate change at time scales beyond short-term observation limits models of future sea level rise. At temperate tidewater margins, abundant subglacial meltwater forms morainal banks (marine shoals) or ice-contact deltas that reduce water depth, stabilizing grounding lines and slowing or reversing glacial retreat. Here we present a radiocarbon-dated record from Integrated Ocean Drilling Program (IODP) Site U1421 that tracks the terminus of the largest Alaskan Cordilleran Ice Sheet outlet glacier during Last Glacial Maximum climate transitions. Sedimentation rates, ice-rafted debris, and microfossil and biogeochemical proxies, show repeated abrupt collapses and slow advances typical of the tidewater glacier cycle observed in modern systems. When global sea level rise exceeded the local rate of bank building, the cycle of readvances stopped leading to irreversible retreat. These results support theory that suggests sediment dynamics can control tidewater terminus position on an open shelf under temperate conditions delaying climate-driven retreat. Tidewater glaciers in fjords can advance/retreat independent of climate due to stabilization by sediments at their termini. We show that an Alaskan paleo-ice stream behaved similarly on an open shelf, suggesting that increased sediment flux may delay catastrophic retreat of outlet glaciers in a warming world.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available