4.8 Review

A reflection on lithium-ion battery cathode chemistry

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-15355-0

Keywords

-

Funding

  1. Welch Foundation [F-1254]
  2. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0005397]

Ask authors/readers for more resources

Lithium-ion batteries have aided the portable electronics revolution for nearly three decades. They are now enabling vehicle electrification and beginning to enter the utility industry. The emergence and dominance of lithium-ion batteries are due to their higher energy density compared to other rechargeable battery systems, enabled by the design and development of high-energy density electrode materials. Basic science research, involving solid-state chemistry and physics, has been at the center of this endeavor, particularly during the 1970s and 1980s. With the award of the 2019 Nobel Prize in Chemistry to the development of lithium-ion batteries, it is enlightening to look back at the evolution of the cathode chemistry that made the modern lithium-ion technology feasible. This review article provides a reflection on how fundamental studies have facilitated the discovery, optimization, and rational design of three major categories of oxide cathodes for lithium-ion batteries, and a personal perspective on the future of this important area. The 2019 Nobel Prize in Chemistry has been awarded to a trio of pioneers of the modern lithium-ion battery. Here, Professor Arumugam Manthiram looks back at the evolution of cathode chemistry, discussing the three major categories of oxide cathode materials with an emphasis on the fundamental solid-state chemistry that has enabled these advances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available