4.8 Article

Arsenic contamination of Bangladesh aquifers exacerbated by clay layers

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16104-z

Keywords

-

Funding

  1. NIEHS [P42 ES010349]
  2. NSF Coupled Natural and Human Systems Dynamics [ICER 1414131]

Ask authors/readers for more resources

Confining clay layers typically protect groundwater aquifers against downward intrusion of contaminants. In the context of groundwater arsenic in Bangladesh, we challenge this notion here by showing that organic carbon drawn from a clay layer into a low-arsenic pre-Holocene (>12 kyr-old) aquifer promotes the reductive dissolution of iron oxides and the release of arsenic. The finding explains a steady rise in arsenic concentrations in a pre-Holocene aquifer below such a clay layer and the repeated failure of a structurally sound community well. Tritium measurements indicate that groundwater from the affected depth interval (40-50m) was recharged >60 years ago. Deeper (55-65m) groundwater in the same pre-Holocene aquifer was recharged only 10-50 years ago but is still low in arsenic. Proximity to a confining clay layer that expels organic carbon as an indirect response to groundwater pumping, rather than directly accelerated recharge, caused arsenic contamination of this pre-Holocene aquifer. Generally it is thought that confining clay layers provide protection to low-arsenic groundwaters against intrusion of shallower, high-arsenic groundwater bodies. Here, the authors show that impermeable clay layers can increase arsenic input to underlying groundwater systems due to reduction of iron oxides coupled to carbon oxidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available