4.8 Article

Single-step manufacturing of hierarchical dielectric metalens in the visible

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16136-5

Keywords

-

Funding

  1. National Research Foundation (NRF) - Ministry of Science and ICT (MSIT) of the Korean government [NRF-2019R1A2C3003129, CAMM-2019M3A6B3030637, NRF-2019R1A5A8080290, NRF-2018M3D1A1058997, NRF-2015R1A5A1037668]
  2. NRF grant - MSIT [NRF-2019K1A47A02113032]
  3. Ministry of Trade, Industry AMP
  4. Energy (MOTIE) of the Korean government [20000887, N0002310]
  5. Korea Evaluation Institute of Industrial Technology (KEIT) [20000887, N0002310] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  6. National Research Foundation of Korea [2015R1A5A1037668] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Metalenses have shown a number of promising functionalities that are comparable with conventional refractive lenses. However, current metalenses are still far from commercialization due to the formidable fabrication costs. Here, we demonstrate a low-cost dielectric metalens that works in the visible spectrum. The material of the metalens consists of a matrix-inclusion composite in which a hierarchy satisfies two requirements for the single-step fabrication; a high refractive index and a pattern-transfer capability. We use a UV-curable resin as a matrix to enable direct pattern replication by the composite, and titanium dioxide nanoparticles as inclusions to increase the refractive index of the composite. Therefore, such a dielectric metalens can be fabricated with a single step of UV nanoimprint lithography. An experimental demonstration of the nanoparticle composite-based metalens validates the feasibility of our approach and capability for future applications. Our method allows rapid replication of metalenses repeatedly and thereby provides an advance toward the use of metalenses on a commercial scale. Current metalenses are far from commercialization due to fabrication cost and low throughput. Here, the authors use a UV-curable resin as a matrix for direct pattern replication by the composite and TiO2 nanoparticles to increase the refractive index of the composite, allowing dielectric metalenses to be manufactured in a single step.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available