4.6 Article

A Network-Based Phenomics Approach for Discovering Patient Subtypes From High-Throughput Cardiac Imaging Data

Journal

JACC-CARDIOVASCULAR IMAGING
Volume 13, Issue 8, Pages 1655-1670

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jcmg.2020.02.008

Keywords

deep phenotype; heart failure; high-dimensional echocardiographic parameters; topological data analysis

Funding

  1. Hitachi Healthcare America
  2. Hitachi Healthcare

Ask authors/readers for more resources

OBJECTIVES: The authors present a method that focuses on cohort matching algorithms for performing patient-to-patient comparisons along multiple echocardiographic parameters for predicting meaningful patient subgroups. BACKGROUND Recent efforts in collecting multiomics data open numerous opportunities for comprehensive integration of highly heterogenous data to classify a patient's cardiovascular state, eventually leading to tailored therapies. METHODS A total of 42 echocardiography features, including 2-dimensional and Doppler measurements, left ventricular (LV) and atrial speckle-tracking, and vector flow mapping data, were obtained in 297 patients. A similarity network was developed to delineate distinct patient phenotypes, and then neural network models were trained for discriminating the phenotypic presentations. RESULTS The patient similarity model identified 4 clusters (I to IV), with patients in each cluster showed distinctive clinical presentations based on American College of Cardiology/American Heart Association heart failure stage and the occurrence of short-term major adverse cardiac and cerebrovascular events. Compared with other clusters, cluster IV had a higher prevalence of stage C or D heart failure (78%; p < 0.001), New York Heart Association functional classes III or IV (61%; p < 0.001), and a higher incidence of major adverse cardiac and cerebrovascular events (p < 0.001). The neural network model showed robust prediction of patient clusters, with area under the receiver-operating characteristic curve ranging from 0.82 to 0.99 for the independent hold-out validation set. CONCLUSIONS Automated computational methods for phenotyping can be an effective strategy to fuse multidimensional parameters of LV structure and function. It can identify distinct cardiac phenogroups in terms of clinical characteristics, cardiac structure and function, hemodynamics, and outcomes. (C) 2020 by the American college of cardiology Foundation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available