4.5 Review

Assessing the factors influencing the performance of constructed wetland-microbial fuel cell integration

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 81, Issue 4, Pages 631-643

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2020.135

Keywords

constructed wetland; electricity generation; microbial fuel cell; wastewater treatment

Ask authors/readers for more resources

Constructed wetland coupled microbial fuel cell (CW-MFC) systems integrate an aerobic zone and an anaerobic zone to treat wastewater and to generate bioenergy. The concept evolves based on the principles of constructed wetlands and plant MFC (one form of photosynthetic MFC) technologies, of which all contain plants. CW-MFC have been used in a wide range of application since their introduction in 2012 for wastewater treatment and electricity generation. However, there are few reports on the individual components and their performance on CW-MFC efficiency. The performance and efficiency of this technology are significantly influenced by several factors such as the organic load and sewage composition, hydraulic retention time, cathode dissolved oxygen, electrode materials and wetland plants. This paper reviews the influence of the macrophyte (wetland plants) component, substrate material, microorganisms, electrode material and hydraulic retention time (HRT) on CW-MFC performance in wastewater treatment and electricity generation. The study assesses the relationship between these parameters and discusses progress in the development of this integrated system to date.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available