4.8 Article

Relationship between manual air valve positioning, water quality and energy usage in activated sludge processes

Journal

WATER RESEARCH
Volume 173, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.115537

Keywords

Wastewater; Aeration; Air valve; Multi-objective; Pareto

Funding

  1. United States Department of Energy (CERC-WET Project 2.5)
  2. Water-Energy Nexus (WEX) Center of the University of California, Irvine
  3. Sanitation Districts of Los Angeles County

Ask authors/readers for more resources

Diffused aeration is the most implemented method for oxygen transfer in municipal activated sludge systems and governs the economics of the entire treatment process. Empirical observations are typically used to regulate airflow distribution through the adjustment of manual valves. However, due to the associated degrees of freedom, the identification of a combination of manual valves that optimizes all performance criteria is a complex task. For the first time a multi-criteria optimization algorithm was used to minimize effluent constituents and energy use by parametrizing manual valves positions. Data from a full-scale facility in conjunction with specific model assumptions were used to develop a base-case facility consisting of a detailed air supply model, a bio-kinetic model and a clarification model. Compared to the base-case condition, trade-offs analysis showed potential energy savings of up to 13.6% and improvement of effluent quality for NH4+ (up to 68.5%) and NOx (up to 81.6%). Based on two different tariff structures of a local power utility, maximum costs savings of 12800 USD mo(-1) to 19000 USD mo(-1) were estimated compared to baseline condition. (c) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available