4.8 Article

Identification, formation and control of polar brominated disinfection byproducts during cooking with edible salt, organic matter and simulated tap water

Journal

WATER RESEARCH
Volume 172, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.115526

Keywords

Tap water; Disinfection byproducts; Edible salt; Cytotoxicity; Cooking

Funding

  1. National Key R&D Program of China [2016YFE0112300]
  2. National Natural Science Foundation of China [51778280]
  3. Natural Science Foundation of Jiangsu Province, China [BK20180058]
  4. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Edible salt is essential to the health of humans and serves as a seasoning universally. Besides chloride, edible salt also contains other anions such as bromide, fluoride, sulfate, and carbonate due to incomplete removal during raw salt refinement. In a household cooking (e.g., soup making) process, a chlorine/monochloramine residual in tap water could react with bromide in edible salt and organic matter in food (e.g., rice, wheat) to form numerous brominated disinfection byproducts (Br-DBPs) at significant levels, which might induce adverse health effects to human beings. In this study, we solicited 20 edible salts of different types (i.e., sea salts, well and rock salts, lake salts, and bamboo salts) from nine countries and determined their bromide levels to be 67-375 mg/kg, with an average level of 173 mg/kg. A total of 25 polar Br-DBPs were detected and identified with structures/formulae in cooking water samples using ultra performance liquid chromatography/electrospray ionization-triple quadruple mass spectrometry (UPLC/ESI-tqMS) and high-resolution mass spectrometry. Effects of cooking conditions (e.g., disinfectant type and level, edible salt dose, organic matter type and dose, sequence and time interval of adding organic matter and salt, etc.) on the formation of polar Br-DBPs were investigated, and optimized cooking conditions with minimized formation of polar Br-DBPs were determined. Further aided with an Hep G2 cell cytotoxicity assay, it was found that the overall cytotoxicity of chlorinated and chloraminated cooking water samples prepared after cooking condition optimization was reduced by 57% and 22%, respectively, compared with those prepared before cooking condition optimization. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available