4.5 Article

In search of the optimal inoculum to substrate ratio during anaerobic co-digestion of spent coffee grounds and cow manure

Journal

WASTE MANAGEMENT & RESEARCH
Volume 38, Issue 11, Pages 1278-1283

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0734242X20914731

Keywords

Anaerobic co-digestion; cow manure; inoculum to substrate ratio; methane; spent coffee grounds; volatile fatty acids

Ask authors/readers for more resources

The inoculum to substrate (I:S) ratio is a crucial operating parameter during the start-up period of anaerobic digestion (AD) processes and this ratio shows high differentiation with respect to substrate composition. While spent coffee grounds (SCG) have started to gain attraction in AD as a co-substrate due to their vast production and promising methane potential, there is still not enough information on the operative environment of SCG-based biogas reactors. This study investigated the optimal I:S ratio during anaerobic co-digestion of SCG and cow manure. Biochemical methane potential tests were conducted at mesophilic conditions and the influence of I:S ratio on methane production and digestion stability was evaluated at a wide range of I:S ratios from 0.5:1 to 4:1 (volatile solids (VS) basis). Methane yields increased gradually starting from the I:S ratio of 0.5:1 up to 3:1 and the highest methane yield (225 mlCH(4) gVS(-1)) was achieved at the I:S ratio of 3:1. Comparatively lower methane yields were obtained at the ratios of 3.5:1 and 4:1. Instable AD conditions were established at the lowest I:S ratio examined (0.5:1), which caused volatile fatty acid (VFA) accumulation. The results highlighted that anaerobic co-digestion of SCG and cow manure is a promising approach, while the I:S ratio should be well-maintained due to the high potential risk of rapid and/or excess VFA production of these feedstocks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available