4.7 Review

Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drougnt

Journal

TRENDS IN PLANT SCIENCE
Volume 25, Issue 9, Pages 868-880

Publisher

CELL PRESS
DOI: 10.1016/j.tplants.2020.04.003

Keywords

-

Categories

Ask authors/readers for more resources

The current trend towards linking stomata regulation to plant hydraulics emphasizes the role of xylem vulnerability. Using a soil-plant hydraulic model, we show that xylem vulnerability does not trigger stomatal closure in medium-wet to dry soils and we propose that soil hydraulic conductivity loss is the primary driver of stomatal closure. This finding has two key implications: transpiration response to drought cannot be derived from plant traits only and is related to soil-root hydraulics in a predictable way; roots and their interface with the soil, the rhizosphere, are key hydraulic regions that plants can alter to efficiently adapt to water limitations. We conclude that connecting below- and aboveground hydraulics is necessary to fully comprehend plant responses to drought.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available