4.2 Article

Bioengineered Skeletal Muscle as a Model of Muscle Aging and Regeneration

Journal

TISSUE ENGINEERING PART A
Volume 27, Issue 1-2, Pages 74-86

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2020.0005

Keywords

bioengineered muscle; human skeletal muscle; senescence; contractility; muscle regeneration

Funding

  1. National Institute on Aging [R01 AG052387]
  2. National Heart Blood and Lung Institute [5R01 HL086582]

Ask authors/readers for more resources

This study developed a three-dimensional bioengineered tissue model mimicking aged muscle, demonstrating the characteristics of senescent muscle and the inability of senescent SkM tissues to regenerate. This model may serve as a powerful platform for studying aging-related issues.
With age, adult skeletal muscle (SkM) is known to decrease in muscle mass, strength, and functional capacity, a state known as sarcopenia. Here we developed anin vitrothree-dimensional (3D) bioengineered senescent SkM tissue using primary human myoblasts. These tissues exhibited the characteristics of atrophied muscle, including expression of senescent genes, decreased number of satellite cells, reduced number and size of myofibers, and compromised metabolism and calcium flux. As a result, senescent SkM tissues showed impaired ability to generate force in response to electrical stimulation compared with young tissues. Furthermore, in contrast to young SkM tissues, senescent tissues failed to regenerate in response to injury, possibly as a result of persistent apoptosis and failure to initiate a proliferation program. Our findings suggest that 3D senescent SkM may provide a powerful model for studying aging and a platform for drug testing and discovery of therapeutic compounds to improve the function of sarcopenic muscle. Impact statement Skeletal muscle (SkM) plays important physiological roles and has significant regenerative capacity. However, aged SkM lose their functionality and regeneration ability. In this article, we present a senescent human bioengineering SkM tissue model that can be used to investigate senescence, metabolic or genetic diseases that inflict SkM, and to test various strategies including novel small molecules that restore muscle function and promote regeneration. One key limitation of two-dimensional cell culture system is the detachment of contractile myotubes from the surface over time, thereby limiting the evaluation of myogenic function. Here we use primary human myoblasts, which exhibit all major hallmarks of aging to mimic the organization and function of native muscle. Using this system, we were able to measure the contractile function, calcium transients, and regeneration capacity of SkM tissues. We also evaluated the response of senescent SkM tissues to injury and their ability to regenerate and recover, compared with young tissues. Our results suggest that three-dimensional constructs enable organization of contractile units including myosin and actin filaments, thereby providing a powerful platform for the quantitative assessment of muscle myotubes in response to injury, genetic or metabolic disorders, or pharmacological testing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available