4.6 Article

Changes of histone H3 lysine 23 acetylation and methylation in porcine somatic cells, oocytes and preimplantation embryos

Journal

THERIOGENOLOGY
Volume 148, Issue -, Pages 162-173

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.theriogenology.2020.03.006

Keywords

H3K23; Porcine oocyte maturation; Embryo development; DNA replication; RNA transcription

Funding

  1. National Research Foundation of Korea (NRF) - Korea Ministry of Education, Science and Technology (MEST) [NRF-2019R1I1A3A01061877]

Ask authors/readers for more resources

Histone modifications play important roles in regulating the expression of developmental genes during preimplantation embryonic development. Here, we analyzed the temporal and spatial distribution of the acetylation and mono-, di- and tri-methylations of noncanonical histone H3 at lysine 23 (H3K23ac, H3K23me1, H3K23me2 and H3K23me3) during porcine oocyte maturation and pre-implantation development, as well as in porcine fetal fibroblasts. H3K23ac, -mel, -me2 and -me3 were enhanced in EdU-positive fetal fibroblasts (S-phase) compared to EdU-negative fetal fibroblasts (G1 and/or G2-phase). More than 91% of the DNA replication foci were well colocalized with H3K23 methylation sites in porcine fetal fibroblasts. H3K23ac and -me3 were detectable through oocyte meiotic resumption. After parthenogenic activation (PA), H3K23me3 was very weakly detected in the pronuclei of zygotes and the nuclei of blastocysts. After in vitro fertilization (IVF), no H3K23me3 signal was observed in the nuclei of IVF-derived embryos, with the exception of the residual polar bodies. In contrast, H3K23ac signals were clearly detected in the nuclei of PA- and IVF-derived blastocysts. The RNA polymerase inhibitor, actinomycin D, reduced the H3K23ac signal in porcine blastocysts. These findings may serve as a valuable reference for further studies of how H3K23 modifications contribute to the regulation of oocyte maturation and early embryonic development in mammals. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available