4.2 Article

Treadmill training improves survival and differentiation of transplanted neural precursor cells after cervical spinal cord injury

Journal

STEM CELL RESEARCH
Volume 45, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scr.2020.101812

Keywords

Neural precursor cells; Transplantation; Spinal cord injury; Treadmill Training; Differentiation; Neuroregeneration

Funding

  1. INBC Innovation Fund of the University of Heidelberg
  2. Cervical Spine Research Society European Section (CSRS-ES)

Ask authors/readers for more resources

Cervical spinal cord injury (SCI) is a devastating event with often lifelong disability. In absence of good treatment options, stem cell therapy with among others neural precursor cells (NPCs) has been introduced to improve neuroregeneration. However, due to secondary injury cascades, survival and differentiation of transplanted NPCs remain poor. Physical therapy and rehabilitation are important corner stones for patients with SCI and have shown beneficial effects on neuroregeneration in animal models. In our current study, we therefore assessed the effects of treadmill training on the survival and differentiation of transplanted NPCs after cervical SCI in rats. Our findings suggest that survival of NPCs as well as differentiation into neurons and oligodendrocytes can be significantly increased when stem cell therapy is combined with treadmill training. In addition, myelination, regeneration of descending tracts and tissue sparing can be improved, resulting in better functional recovery. These results underline the importance of synergistic treatment strategies for SCI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available