4.6 Article

Enhanced performance of carbon-based perovskite solar cells with a Li+-doped SnO2 electron transport layer and Al2O3 scaffold layer

Journal

SOLAR ENERGY
Volume 201, Issue -, Pages 523-529

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2020.03.046

Keywords

Al2O3 interlayer; Li-SnO2 ETL; Carbon electrode; HTM-free PSCs; Low temperature

Categories

Funding

  1. key laboratory open project of Xinjiang Uighur Autonomous Region [2019D04006]
  2. National Natural Science Foundation of China [51662037]
  3. Graduate Research and Innovation Project of Xinjiang Uighur Autonomous Region [XJ2019G051]

Ask authors/readers for more resources

SnO2 (Tin oxide) is one of the most successful electron transport layer (ETL) materials in perovskite solar cells (PSCs) because of its low sintering temperature and simple preparation process. Similarly, carbon-based hole transport material-free PSCs (C-PSCs) have been widely studied because of their excellent stability and low price. Therefore, C-PSCs having SnO2 as ETL can be envisaged as a promising PSCs system for commercial flexible equipment. However, studies on this system are still scarce because of its low power conversion efficiency (PCE). In this paper, the electron lifetime and current (J(sc)) of a PSC containing a Li-SnO2/Al2O3 + CH3NH3PbI3/carbon structure are greatly improved by doping lithium into SnO2(Li-SnO2) and sandwiching an Al2O3 interlayer into the Li-SnO2 ETL and CH3NH3PbI3. A PCE of 10.01% is obtained, which is 42.3% higher than a PSC having a SnO2/CH3NH3PbI3/carbon structure. The entire preparation process is very simple and is carried out in an air atmosphere below 200 degrees C (20-40% humidity).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available