4.8 Article

A Single Molecule Drug Targeting Photosensitizer for Enhanced Breast Cancer Photothermal Therapy

Journal

SMALL
Volume 16, Issue 18, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201907677

Keywords

estrogen receptors; photothermal therapy; single molecule drug targeting; structure-inherent targeting

Funding

  1. National Science Foundation of China [21576037, 21878039, 21421005, 21676047, 21822804]
  2. NSFCLiaoning United Fund [U1608222]

Ask authors/readers for more resources

Targeting is one of the most important strategies for enhancing the efficacy of cancer photothermal therapy (PTT) and reducing damage to surrounding normal tissues. Compared with the traditional targeting approaches, the active targeting of breast cancer cells in PTT using chemotherapeutic drugs, such as tamoxifen (TAM), in combination with single-molecule photothermal photosensitizers has superior selectivity and therapeutic effects. However, single-molecule drug-targeting photosensitizers for improved PTT efficacy are not widely reported. Accordingly, herein, a near-infrared induced small-molecule photothermal photosensitizer (CyT) is developed that actively targets the estrogen receptors (ERs) of breast cancer cells as well as targets mitochondria by structure-inherent targeting. Cell uptake and cytotoxicity studies using different types of cells show that CyT enhances the efficiency of TAM-based PTT by targeting ER-overexpressing breast cancer cells and selectively killing them. In vivo experiments demonstrate that CyT can be used as a photothermal agent for fluorescence imaging-guided PTT. More importantly, the intravenous injection of CyT results in better targeting and efficiency of tumor inhibition compared with that achieved with the TAM-free control molecule Cy. Thus, the study presents an excellent small-molecule photothermal agent for breast cancer therapy with potential clinical application prospects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available