4.8 Article

Ultrafast Laser Manufacture of Stable, Efficient Ultrafine Noble Metal Catalysts Mediated with MOF Derived High Density Defective Metal Oxides

Journal

SMALL
Volume 16, Issue 18, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202000749

Keywords

defects; lasers; metal oxides; metal-organic frameworks; noble metal catalysts

Funding

  1. National key R&D program of China [2018YFB1107700]

Ask authors/readers for more resources

Supported metal nanoparticles (MNPs) undergo severe aggregation, especially when the interaction between MNPs and their supports are limited and weak where their performance deteriorates dramatically. This becomes more severe when catalysts are operated under high temperature. Here, it is reported that MNPs including Pt, Au, Rh, and Ru, with sub-2 nm size can be stabilized on densely packed defective CeO2 nanoparticles with sub-5 nm size via strong coupling by direct laser conversion of corresponding metal ions encapsulated cerous metal-organic frameworks (Ce-MOFs). Ce-MOF serves as an ideal dispersion precursor to uniformly encapsulate noble metal ions in their orderly arranged pores. Ultrafast laser vaporization and cooling forms uniform, ultrasmall, well-mixed, and exceptionally dense nanoparticles of metal and metal oxide concurrently. The laser-induced ultrafast reaction (within tens of nanoseconds) facilitates the precipitation of CeO2 nanoparticles with abundant surficial defects. Due to the well-mixed ultrasmall Pt and CeO2 components with strong coupling, this catalyst exhibits exceptionally high stability and activity both at low and high temperatures (170-1100 degrees C) for CO oxidation in long-term operation, significantly exceeding catalysts prepared by traditional methods. The scalable feature of laser and huge MOF family make it a versatile method for the production of MNP-based nanocomposites in wide applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available