4.8 Article

Pressure-Dependent Structural and Chemical Changes in a Metal-Organic Framework with One-Dimensional Pore Structure

Journal

CHEMISTRY OF MATERIALS
Volume 28, Issue 15, Pages 5336-5341

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.6b01148

Keywords

-

Funding

  1. Global Research Laboratory Program of the Korean Ministry of Science, ICT and Planning (MSIP) [NRF-2009-00408]
  2. National Research Laboratory Program of the Korean Ministry of Science, ICT and Planning (MSIP) [NRF-2015R1A2A1A01007227]

Ask authors/readers for more resources

Pressure-dependent structural and chemical changes of the metal organic framework (MOF) compound MIL-47(V) have been investigated up to 3 GPa using different pore-penetrating liquids as pressure transmitting media (PTM). We find that at 0.3(1) GPa the terephthalic acid (TPA) template molecules located in the narrow channels of the as synthesized MIL-47(V) are selectively replaced by methanol molecules from a methanol ethanol water mixture and form a methanol inclusion complex. Further pressure increase leads to a gradual narrowing of the channels up to 1.9(1) GPa, where a second irreversible insertion of methanol molecules leads to more methanol molecules being inserted into the pores. After pressure release methanol molecules remain within the pores and can be removed only after heating to 400 degrees C. In contrast, when MIL-47(V) is compressed in water, a reversible replacement of the TPA by H2O molecules takes place near 1 GPa. The observed structural and chemical changes observed in MIL-47(V) demonstrate unique high pressure chemistry depending on the size and type of molecules present in the liquid PTM. This allows postsynthetic nonthermal pressure-induced removal and insertion of organic molecules in MOFs forming novel and stable phases at ambient conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available