4.6 Article

Design and Verification of Humidity Sensors Based on Magnesium Oxide Micro-Arc Oxidation Film Layers

Journal

SENSORS
Volume 20, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/s20061736

Keywords

humidity range; MgO; micro-arc oxidation; response signal

Funding

  1. Micro-nano Packaging and Testing and Operation Technology Laboratory of Soochow University

Ask authors/readers for more resources

Humidity detection range is an important indicator for measuring the performance of humidity sensors, but semiconductor humidity sensors often face the problems of narrow detection ranges and insufficient detection sensitivities. In this paper, a magnesium oxide (MgO) humidity sensor based on micro-arc oxidation (MAO) technology was designed to solve these problems by simultaneously using impedance and capacitance as the response signals, as well as by normalizing the output of the two signals. The experimental results showed that the average output of the micro-arc MgO ceramic film, with impedance as the response signal, could reach 150 in the low relative humidity(RH) range (11.3-67% RH), which was much higher than its sensitivity in the high humidity range (< 1), and the film showed fast response (13 s) and recovery (61 s). Under high humidity conditions (67-97.3% RH), with capacitance as the response signal, the output of the micro-arc MgO was as high as 120. Therefore, the micro-arc MgO humidity sensor with impedance, and the sensor with capacitance as the response signal, demonstrated good stability in low humidity and in high humidity environments, respectively, indicating that the method of selecting appropriate response signals for different humidity environments can be applied to extend the humidity detection range of sensing material, and to improve the humidity detection capability of a sensor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available