4.8 Article

High-Pressure Phase Stability and Superconductivity of Pnictogen Hydrides and Chemical Trends for Compressed Hydrides

Journal

CHEMISTRY OF MATERIALS
Volume 28, Issue 6, Pages 1746-1755

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.5b04638

Keywords

-

Funding

  1. National Natural Science Foundation of China [11274136, 11534003]
  2. Ministry of Education
  3. Postdoctoral Science Foundation of China [2013M541283]
  4. Recruitment Program of Global Youth Experts in China
  5. Engineering and Physical Sciences Research Council (EPSRC) of the UK [EP/J017639/1]
  6. Engineering and Physical Sciences Research Council [EP/J017639/1, EP/K014560/1] Funding Source: researchfish
  7. EPSRC [EP/J017639/1, EP/K014560/1] Funding Source: UKRI

Ask authors/readers for more resources

The recent breakthrough discovery of unprecedentedly high temperature superconductivity of 203 K in compressed sulfur hydrides has stimulated significant interest in finding new hydrogen containing superconductors and elucidating the physical and chemical principles that govern these materials and their superconductivity. Here we report the prediction of high temperature superconductivity in the family of pnictogen hydrides using first-principles calculations in combination with global optimization structure searching methods. The hitherto unknown high-pressure phase diagrams of binary hydrides formed by the pnictogens of phosphorus, arsenic, and antimony are explored, stable structures are identified, and their electronic, vibrational, and superconducting properties are investigated. We predict that SbH4 and AsH8 are high-temperature superconductors at megabar pressures, with critical temperatures in excess of 100 K. The highly symmetrical hexagonal SbH4 phase is predicted to be stabilized above about 1.50 GPa, which is readily achievable in diamond anvil cell experiments. We find that all phosphorus hydrides are metastable with respect to decomposition into the elements within the pressure range studied. Trends based on our results and data in the literature reveal a connection between the high-pressure behaviors and ambient-pressure chemical quantities which provides insight into understanding which elements may form hydrogen-rich high-temperature superconducting phases at high pressures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available