4.7 Article

Preparation, characterization, and application of magnetic activated carbon for treatment of biologically treated papermaking wastewater

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 713, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.136423

Keywords

Magnetic activated carbon; Biologically treated papermaking wastewater; Selective adsorption; EEM fluorescence spectrum; High-performance size exclusion chromatography

Funding

  1. National Science and Technology Major Projects Special for Water Pollution Control and Management [2017ZX07206-002-03]

Ask authors/readers for more resources

In view of the urgent need for tertiary treatment of papermaking wastewater and the difficulty in separating powdered activated carbon (PAC) from water, the magnetic activated carbon (33%-MPAC, 50%-MPAC and 67%-MPAC) were prepared by chemical coprecipitation method for adsorption of biologically treated papermaking wastewater (BTPW). A series of characterization of MPAC and PAC were carried out and show that the content of iron oxides is negatively related to the proportion of micropores in MPAC. The loaded iron oxides is mainly the mixture of magnetite and maghemite, and the maximum saturation magnetization of MPAC can reach 29.68 emu/g. Batch mode experiments were performed, and found that the adsorption effect of MPAC is slightly worse than that of PAC, the adsorption capacity of COD in MPAC can reach about 65 mg/g, and pH = 2 and 10 degrees C are more favorable for adsorption. The adsorption isotherms and kinetics were well fitted by the Freundlich model and pseudo-second-order kinetic model, respectively. The selective adsorption was studied by using the excitation emission matrix (EEM) fluorescence spectrum and high-performance size exclusion chromatography (HPSEC). It is conduded that all adsorbents are preferred to adsorb humic acid-like substances (HA). And all adsorbents are preferred to adsorb low apparent molecular weight substances (LAMW, AMW < 1500 Da), with the increase of iron oxides content, the phenomenon of MPAC preferentially adsorbed LAMW became less obvious. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available