4.5 Article

PVDF/ZnO composite films for photocatalysis: A comparative study of solution mixing and melt blending methods

Journal

POLYMER ENGINEERING AND SCIENCE
Volume 60, Issue 6, Pages 1146-1157

Publisher

WILEY
DOI: 10.1002/pen.25368

Keywords

blending; catalysis; composites; films; mixing; phase separation

Ask authors/readers for more resources

Heterogeneous photocatalysis represents a solution for several environmental problems. However, achieving photocatalyst separation from reaction media on a large scale remains a challenge, one that might be overcome by the immobilization of photocatalysts into supports. To this end, composites of polyvinylidene fluoride and zinc oxide (ZnO) were prepared by three different techniques: solution mixing (SM) followed by Nonsolvent Induced Phase Separation; and melt blending at both low- and high-shear rates (LS and HS) in a rheometer and mixing chamber, respectively, to compare the resultant morphology in photocatalysis. Photocatalytic efficiency was assessed by methylene blue (MB) discoloration in a batch reactor liquid phase and by resazurin (RZ) reduction. The changes promoted by nanoparticle inclusion, processing conditions and UV effect were demonstrated by FTIR-ATR, XRD, DSC, and SEM. Results showed that ZnO incorporation was successful under all processing conditions, providing effective photocatalytic composites. However, samples prepared by SM had a twofold increase in discoloration efficiency and fourfold increase in surface photoactivity, when compared with LS or HS-produced samples, explained by its higher porosity of 88% +/- 1.3%. The covering of the photocatalyst surface was also evident on SEM analysis for melt blended samples, further contributing to reduction in their photocatalytic activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available