4.6 Article

Computer aided detection for laterally spreading tumors and sessile serrated adenomas during colonoscopy

Journal

PLOS ONE
Volume 15, Issue 4, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0231880

Keywords

-

Ask authors/readers for more resources

Background Evidence has shown that deep learning computer aided detection (CADe) system achieved high overall detection accuracy for polyp detection during colonoscopy. Aim The detection performance of CADe system on non-polypoid laterally spreading tumors (LSTs) and sessile serrated adenomas/polyps (SSA/Ps), with higher risk for malignancy transformation and miss rate, has not been exclusively investigated. Methods A previously validated deep learning CADe system for polyp detection was tested exclusively on LSTs and SSA/Ps. 1451 LST images from 184 patients were collected between July 2015 and January 2019, 82 SSA/Ps videos from 26 patients were collected between September 2018 and January 2019. The per-frame sensitivity and per-lesion sensitivity were calculated. Results (1) For LSTs image dataset, the system achieved an overall per-image sensitivity and per-lesion sensitivity of 94.07% (1365/1451) and 98.99% (197/199) respectively. The perframe sensitivity for LST-G(H), LST-G(M), LST-NG(F), LST-NG(PD) was 93.97% (343/365), 98.72% (692/701), 85.71% (324/378) and 85.71% (6/7) respectively. The per-lesion sensitivity of each subgroup was 100.00% (71/71), 100.00% (64/64), 98.31% (58/59) and 80.00% (4/5). (2) For SSA/Ps video dataset, the system achieved an overall per-frame sensitivity and per-lesion sensitivity of 84.10% (15883/18885) and 100.00% (42/42), respectively. Conclusions This study demonstrated that a local-feature-prioritized automatic CADe system could detect LSTs and SSA/Ps with high sensitivity. The per-frame sensitivity for non-granular LSTs and small SSA/Ps should be further improved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available